PLIlON] PROGRUVNTNIG - |

Chap - 3 BY-
Prof. A. P. Chaudhari

Pyt h O n St r-i n g S (M.Sc. Computer Science, SET)

HOD,

Department of Computer Science
S.V.S’s Dadasaheb Rawal College,

Dondaicha




Chap — 3 Python Strings
Introduction to String
String Literals
Assign String to a Variable
Multiline Strings
Operations on Strings, Index Operator: Working with
the Characters of a String, String Methods, Length, The

Slice Operator, String Comparison,

Concepts of Python Lists: Creating, Initializing and
Accessing elements in lists, Traversing, Updating and
deleting elements from Lists.

List Operations: Concatenation, List Indexing, Slices
Built- in List functions and methods

Aliasing, Cloning Lists




Introduction to String :

Strings are amongst the most popular types in Python. We can
create them simply by enclosing characters in quotes. Python treats
single quotes the same as double quotes. Creating strings is as simple
as assigning a value to a variable. For example -

varl = 'Hello World!

var2 = "Python Programming"

String Literals :

In Python programming language, string literals are enclosed by

either single quotation marks, or double quotation marks. For example
the two string literals ‘hello’ and “hello” are same. You can use print()
function to display a string literal.

e.g..  print("Python Programming”)




Assigning String to a Variable :
In Python programming we can assign a string value to a
variable trough the variable name followed by an equal sign.
The following syntax shows how to assign string to a variable.
cname = “Dadasaheb Rawal College”

We will display the value in string variable by using print()

function. E.g.: print(chame)

Multiline String:

You can assign a multiline string to a variable by using three quotes:

e.g.. O/P:
address = ""'Plot No. 10, Plot No. 10,

Ganesh Colony, Ganesh Colony,
Pathardi Phata, Pathardi Phata,

Nashik, (Maharashtra)"" Nashik, (Maharashtra)
print (address)




Operations on String :
Substring:

Python does not support a character type; these are treated as

strings of length one, thus also considered a substring.

To access substrings, use the square brackets for slicing along
with the index or indices to obtain your substring. For example -
e.g.. varl ="Hello World!’

var2 = "Python Programming"

print "varl[O]. ", varl1[0]

print "var2[1:5]. ", var2[1:5]

varl[0]: H

var2[1:5]. ytho




Operations on String :
Updating Strings

You can "update" an existing string by reassigning a variable to

another string. The new value can be related to its previous value or to a

completely different string altogether. For example -
varl = 'Hello World"
print "Updated String :- ", varl[.6] + 'Python'
When the above code is executed, it produces the following result —

Updated String :- Hello Python




String special operator:
Assume string variable a holds 'Hello' and variable b holds 'Python’, then -

Operator Description Example

+ Concatenation - Adds values on either |a + b will give HelloPython
side of the operator

Repetition - Creates new strings, |a*2 will give -HelloHello
concatenating multiple copies of the
same string

Slice - Gives the character from the|a[l] will give e
given index

Range Slice - Gives the characters from | a[1:4] will give ell
the given range

Membership - Returns true if a character{H in a will give 1
exists in the given string

Membership - Returns true if a character|M not in a will give 1
does not exist in the given string




Built-in String Functions:

Python includes the following some built-in methods to manipulate strings -
1) capitalize() :- Python String capitalize() method returns a copy of the string
with only its first character capitalized.
e.g.. str = "this is string example....wow!!!";
print str.capitalize()

O/P: This is string example....wow!!!

2) center() :- Python string method center() returns centered in a string of length

width. Padding is done using the specified fillchar. Default filler is a space.
Syntax: str.center(width [, fillchar])
e.g.. str = "this is string example....wow!!!"
print str.center(40,'@")
O/P: @ @@ @this is string example...wow!!'@@ @ @




Built-in String Functions:

3) count():- Python string method count() returns the number of occurrences of
substring sub in the range [start, end]. Optional arguments start and end are
interpreted as in slice notation.

Syntax: str.count(sub, start, end)

Parameters: sub — This is the substring to be searched.

start — Search starts from this index. By default search starts from 0 index.

end — Search ends from this index. By default search ends at the last index.

e.g.. str = "this is string example....wow!!!*

sub ="I"

print sub, ‘ counts ‘, str.count(sub, 4, 40)

sub = "wow"
print sub, ‘ counts ‘, str.count(sub)
| counts 2

wow counts 1




Built-in String Functions:

4) find():- Python string method find() determines index, if string str occurs in

string, or in a substring of string if starting index beg and ending index end are
given.
Syntax: str.find(str, beg, end)
This method return index number if str found otherwise -1.
e.g.. strl = "this is string example....wow!!!"
str2 = "exam"
print strl.find(str2)
print strl.find(str2, 10)
print strl.find(str2, 40)
15




Built-in String Functions:

5) index():- Python string method index() determines index, if string str occurs in

string, or in a substring of string if starting index beg and ending index end are
given. This method is same as find(), but raises an exception if sub is not found.
Syntax: str.index(str, beg, end)

This method return index number if str found otherwise exception.
e.g.: strl = "this is string example....wow!!!"

str2 = "exam"

print strl.index(str2)
O/P: 15

15

Traceback (most recent call last):

print strl.index(str2, 10)
print strl.index(str2, 40)

File "C:\Python27\z1.py", line 5, in <module>
print strl.index(str2, 40)

ValueError: substring not found




Built-in String Functions:

6) islower():- Python string method islower() checks whether all the case-based
characters (letters) of the string are lowercase.
Syntax: str.islower()
e.g.1l: str="THIS is string example....wow!!!"

print str.islower() O/P: False
e.g.2:  str="this is string example....wow!!!"

print str.islower() O/P: True
7) isupper():- Python string method isupper() checks whether all the case-
based characters (letters) of the string are uppercase.
Syntax: str.isupper()
e.g.l: str="THIS IS STRING EXAMPLE...WOWII!"

print str.isupper()

e.g.2: str="“THIS is string example....wow!!!"

print str.isupper()




Built-in String Functions:

8) join():- Python string method join() returns a string in which the string
elements of sequence have been joined by str separator.

Syntax: str.join(sequence)

e.g.: s=""

seq = ("a", "b", "c"); # This is sequence of strings.

print s.join(seq) O/P: a-b-c

9) len():- Python string method len() returns the length of the string.

Syntax: len(str)

e.g.. str = "this is string example....wow!!!"
print "Length of the string: ", len(str)
O/P: Length of the string: 32




Built-in String Functions:

10) lower():- Python string method lower() returns a copy of the string in which
all case-based characters have been lowercased.
Syntax: str.lower()
e.g.: str = "THIS IS STRING EXAMPLE... WOw!!"
print str.lower()

O/P: this is string example....wow!!!

11) upper():- Python string method upper() returns a copy of the string in which

all case-based characters have been uppercased.

Syntax: str.upper()

e.g.. str =" this is string example....wow!!!”
print str.upper()

O/P: THIS IS STRING EXAMPLE...WOW!!!




List:
The most basic data structure in Python is the sequence. Each element

of a sequence is assigned a number - its position or index. The first index is zero,

the second index is one, and so on.

There are certain things you can do with all sequence types. These

operations include indexing, slicing, adding, multiplying, and checking for

membership. In addition, Python has built-in functions for finding the length of a
sequence and for finding its largest and smallest elements.

The list is a most versatile datatype available in Python which can be
written as a list of comma-separated values items between square brackets.
Important thing about a list is that items in a list need not be of the same type.
For example -

listl = ['physics', 'chemistry', 1997, 2000];
list2=[1, 2,3,4,5];
list3 = ["a", "b", "c", "d"]




Accessing Values in Lists:

To access values in lists, use the square brackets for slicing along with
the index or indices to obtain value available at that index.
For example -
listl = ['physics', 'chemistry', 1997, 2000];
list2 =1, 2,3,4,5,6,7];
print "list1[0]: ", list1[O]
print "list2[1:5]: ", list2[1:5]

When the above code is executed, it produces the following result -
list1[O0]: physics
list2[1:5]: [2, 3, 4, 5]




Updating Lists:

You can update single or multiple elements of lists by giving the slice on

the left-hand side of the assignment operator, and you can add to elements in a
list with the append method.
For example -

list = ['physics’, 'chemistry', 1997, 2000];

print "Value available at index 2 : “, list[2]

list[2] = 2001;

print "New value available at index 2 : “, list[2]
When the above code is executed, it produces the following result —

Value available at index 2 : 1997

New value available at index 2 : 2001




Delete List Elements:

To remove a list element, you can use either the del statement if you

know exactly which elements you are deleting or the remove method if you do

not know.
For example -
listl = ['physics', 'chemistry', 1997, 2000];
print listl
del list1[2];
print "After deleting value at index 2 : "
print listl
When the above code is executed, it produces following result -
['physics’, ‘chemistry’, 1997, 2000]
After deleting value at index 2 :

['physics’, 'chemistry', 2000]




Basic List Operations:

Lists respond to the + and * operators much like strings; they mean

concatenation and repetition here too, except that the result is a new list, not a

string.

Python Expression

Description

len[1,2,3]

3

Length

[1, 2, 3]+ [4, 5, 6]

1, 2, 3,4, 5, 6]

Concatenation

[Hi'] * 4

['Hil", "Hil', "Hi', 'Hil']

Repetition

3in[1, 2, 3]

True

Membership

for xin[1, 2, 3]: print X,

123

lteration




Built-in List Functions:

1) cmp(): Python list method cmp() compares elements of two lists.

Syntax: cmp(a, b)
Parameters: a and b are two elements in which the comparison is being done.

Returns: -1 if a<b, O if a=b 1if a>b

e.g.l: listl =[1,2,3]
list2 = [4,5,6]
print cmp(listl, list2)
listl = [1,2,3]
list2 = [4,5,6]
print cmp(list2, listl)
listl = ['abc’,'mno’]
list2 = ['abc’,'mno']

print cmp(listl, list2)




Built-in List Functions:

2) len(): Python list method Ien() returns the number of elements in the list.

Syntax: len(list)
Parameters: list — This is a list for which number of elements to be counted.

Returns: This method returns the number of elements in the list.

listl = [101, ‘Atharv’, ‘Dhule’, 30000]

list2 = ['English’, ‘Maths’, ‘Science’]

print “Number of elements in list1:”, len(listl)
print “Number of elements in list2:”, len(list2)
Number of elements in listl: 4

Number of elements in list2: 3




Built-in List Functions:

3) max(): Python list method max() returns the elements from the list with

maximum value.

Syntax: max(list)
Parameters: list = This is a list from which max valued element to be returned.

Returns: This method returns the elements from the list with maximum value.

listl = [400, 100, 700, 300]

list2 = ['Maths’, ‘English’, ‘Science’]

print “Maximum element in listl:”, max(listl)
print “Maximum element in list2:”, max(list2)
Maximum element in list1l: 700

Maximum element in list2:: Science




Built-in List Functions:

4) min(): Python list method min() returns the elements from the list with

minimum value.

Syntax: min(list)
Parameters: list — This is a list from which min valued element to be returned.

Returns: This method returns the elements from the list with minimum value.

listl = [400, 100, 700, 300]

list2 = ['Maths’, ‘English’, ‘Science’]

print “Minimum element in list1:”, min(listl)
print “Minimum element in list2:”, min(list2)
Minimum element in list1: 100

Minimum element in list2:: English




Built-in List Functions:

5) list(): Python list method list() takes sequence types and converts them to
lists. This is used to convert a given tuple into list.

Note — Tuple are very similar to lists with only difference that element values of a
tuple can not be changed and tuple elements are put between parentheses

instead of square bracket.

Syntax: list(seq)
Parameters: seq — This is a tuple to be converted into list.

Returns: This method returns the list.

tuplel = (101, 'Atharv', 'Dhule’, 30000)

listl = list(tuplel)

print "List Elements: ", listl

List Elements: [101, 'Atharv', 'Dhule’, 30000]




Built-in List Methods:

1) append(): Python list method append() appends a passed obj into the

existing list.

Syntax: list.append(obj)
Parameters: obj — This is the object to be appended in the list.

Returns: This method does not return any value but updates existing list.

e.g.. listl = [101, 'AtharVv’, 'Dhule’, 30000]
listl.append(‘Manager®)
print “Updated List Elements: ", listl
Updated List Elements: [101, ‘Atharv', 'Dhule’, 30000, ‘Manager']




Built-in List Methods:

2) count(): Python list method count() returns count of how many

times obj occurs in list.

Syntax: list.count(obj)
Parameters: obj — This is the object to be counted in the list.

Returns: This method returns count of how many times obj occurs in list.

e.g.. listl = [101, 'Atharv', 'Dhule’, 101, 30000]
print "Count for 101: ",listl.count(101)
print "Count for Atharv: " listl.count(‘Atharv')
Count for 101: 2
Count for Atharv: 1




Built-in List Methods:

3) extend(): Python list method extend() appends the contents of seq to list.

Syntax: list.extend(seq)
Parameters: seq — This is the list of elements
Returns: This method does not return any value but add the content to existing

list.

listl = [101, 'AtharVv’, 'Dhule’, 30000]
list2 = ['English’, ‘Maths', 'Science']
listl.extend(list2)
print "Extended List: ",listl
O/P:  Extended List: [101, 'Atharv', 'Dhule', 30000, 'English', 'Maths', 'Science']




Built-in List Methods:

4) index(): Python list method index() returns the lowest index in list

that obj appears.

Syntax: list.index(obj)
Parameters: obj — This is the object to be find out.
Returns: This method returns index of the found object otherwise raise an

exception indicating that value does not find.

e.g.. listl = [101, 'AtharVv', 'Dhule’, 30000]
list2 = ['English’, ‘Maths', 'Science']
print "Index for Dhule: " listl.index('Dhule’)
print "Index for Maths: " list2.index('Maths')
Index for Dhule: 2
Index for Maths: 1




Built-in List Methods:

5) insert(): Python list method insert() inserts object obj into list at offset index.

Syntax: list.insert(index, obj)

Parameters: index — This is the Index where the object obj need to be inserted.
obj — This is the Object to be inserted into the given list.

Returns: This method does not return any value but it inserts the given element

at the given index.

e.g.. listl = [101, 'AtharVv', 'Dhule’, 30000]
listl.insert(2,'Manager’)
print "Final List: " listl
Final List: [101, ‘Atharv', 'Manager', 'Dhule’, 30000]




Built-in List Methods:

6) pop(): Python list method pop() removes and returns last object or obj from
the list.

Syntax: list.pop(obj)

Parameters: obj — This is an optional parameter, index of the object to be
removed from the list.

Returns: This method returns the removed object from the list.

e.g.1: listl =[101, 'Atharv', 'Dhule', 30000]

print "Poped Element: " list1.pop()

print "Final List: ", listl

Poped Element. 30000

Final List: [101, 'Atharv', 'Dhule’]

listl = [101, 'AtharVv', 'Dhule’, 30000]

print "Poped Element: " listl.pop(2) O/P: Poped Element: Dhule
print "Final List: " listl Final List: [101, 'Atharv', 30000]




Built-in List Methods:

7) remove(): Python list method remove() searches for the given element in the

list and removes the first matching element.
Syntax: list.remove(obj)
Parameters: obj — This is the object to be removed from the list.
Returns: This Python list method does not return any value but removes the
given object from the list.
e.g.1: listl =[101, 'Atharv', 'Dhule', 101, 30000]
listl.remove(101)
print "List after removing: ",listl
List after removing: [‘Atharv', 'Dhule’, 101, 30000]
listl = [101, 'Atharv', 'Dhule’, 101, 30000]
listl.remove('Dhule")
print "List after removing: " listl
List after removing: [101, 'Atharv', 101, 30000]




Built-in List Methods:

8) reverse(): Python list method reverse() reverses objects of list in place.

Syntax: list.reverse()
Returns: This method does not return any value but reverse the given object from

the list.

e.g.1: listl =[101, 'Atharv', 'Dhule', 30000]
listl.reverse()
print "Reverse List: " listl
Reverse List: [30000, 'Dhule', 'Atharv', 101]




Built-in List Methods:

9) sort(): Python list method sort() sorts objects of list.

Syntax: list.sort()
Returns: This method does not return any value but it changes from the original

list.

e.g.1: listl =[101, 'Atharv', 'Dhule', 30000]
listl.sort()
print "Sorted List: " listl
Sorted List: [101, 30000, ‘Atharv', ‘Dhule']




